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Abstract

Twofish is a 128-bit block cipher submitted as a candidate for the Ad-
vanced Encryption Standard (AES). It has a structure related to the Feistel
structure and runs in 16 rounds. In this paper we consider mainly differen-
tials of Twofish and show that there are differentials for Twofish for up to 16
rounds, predicting at least 32 bits of nontrivial information in every round.
In addition, it holds that for any fixed user-selected key it is possible, at least
in theory, to find one good pair of plaintexts following the differential through
all 16 rounds. Also, we use these findings to try and distinguish (reduced)
Twofish from a randomly chosen permutation.

1 Introduction

Twofish [16] is a secret-key encryption primitive, which is one of the final five
candidates for the Advanced Encryption Standard [15]. Twofish is a 16-round cipher
which uses components from the ciphers Khufu [14], Square [1], and SAFER [13].
The 128-bit plaintexts are first split into four words of each 32 bits, X0

LL, X0
LR, X0

RL,

and X0
RR. The four words are then exclusive-or’ed with the 32-bit round keys,

K0, K1, K2, and K3 respectively. Then we compute for i = 0, . . . , 15:

w1 = g(X i
LL) (1)

w2 = g(X i
LR << 8) (2)

X i+1
LL = ((w1 + w2 + K2i+8)⊕X i

RL) >> 1 (3)

X i+1
LR = (w1 + 2w2 + K2i+9)⊕ (X i

RR << 1) (4)

X i+1
RL = X i

LL (5)

X i+1
RR = X i

LR (6)

The function g consists of four key-dependent S-boxes plus a linear transformation
derived from an MDS-code. The key-dependent S-boxes are computed from two
fixed 8-bit S-boxes q0 and q1. The ciphertext is the concatenation of the values
X16

RL ⊕K4, X
16
RR ⊕K5, X

16
LL ⊕K6, X

16
LR ⊕K7. Figure 1 is a non-detailed picture of

one round of Twofish. Here g8 is the same as g but where the inputs are rotated by
eight positions to the left. For a more detailed pictorial illustration of the encryption
function of Twofish we refer to Figure 1 of [16].

It follows by inspection of Figure 1 that Twofish does not have the classical
Feistel structure as claimed. If one removes the one-bit rotations, then the resulting
cipher is a Feistel cipher. Although it is possible to incorporate the one-bit rotations
inside the round function by applying simple transformations, this would result in
different round functions in the different rounds.

∗Revised version of [4].
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Figure 1: The Twofish graph. + denotes the addition of a round key modulo 232,
g8 is the function g but where the inputs are rotated 8 positions to the left, and
PHT(x, y) = (x + y, x + 2y) both outputs modulo 232.

2 The Twofish S-boxes q0 and q1

In this section we analyse the fixed S-boxes used in Twofish. Each of the S-boxes
q0 and q1 are constructed from four 4-bit S-boxes, t1, t2, t3, and t4. Call this con-
struction the q0,1-construction. The following fact is well-known.

Fact 1 Consider a function f : {0, 1}r → {0, 1}r. If f is a permutation, then the

algebraic degree of any output bit as a function of the input bits is at most r − 1.

Now we can prove the following property of the S-boxes.

Fact 2 For any choices of the bijective 4-bit S-boxes t1, t2, t3, and t4 in the q0,1-

construction each bit in the output of the resulting 8-bit S-box can be written as a

function of the input bits with algebraic degree at most six.

Proof. The left half of the 8-bit input in the q0,1-construction maps one-to-one to
both the left and right halves of the output, and similarly for the right half of the
input. Therefore, any output bit will be of at most degree three as a function of
either half of the input, totally at most degree six. �

Note that the nonlinear order of an S-box is not the same as the algebraic
degree of the output bits. The nonlinear order of an n-bit bijective S-box is the
minimum algebraic degree of the 2n − 1 boolean functions obtained from a linear
combination of the n coordinate functions. It can be shown that the nonlinear order
of a randomly chosen bijective n-bit S-box is n− 2 with a high probability.

The authors of Twofish note [16, §7.2.1] “The construction method for building
q0 and q1 from 4-bit permutations was chosen because .... without adding any
apparent weaknesses to the cipher”. For a randomly chosen 8-bit permutation the
probability is very high that the algebraic degree of one or more output bits as
functions of the input bits is seven. So random 8-bit S-boxes have better properties
than the q0,1-construction with respect to the algebraic degrees, the question is if
they are substantially better.
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Figure 2: A one-round truncated differential.

3 The linear transformation

The linear transformation inside the function g of Twofish is similar to the construc-
tions in Square [1] and Rijndael [2]. It is a permutation of a vector of four bytes,
such that for any two different input vectors, the total number of different bytes in
the input vector and the output vector is at least five. This provides diffusion to
the cipher. Two inputs to g different in only one of the four bytes are guaranteed
to differ in all four bytes at the output of g. However, this also enables an attacker
to specify a so-called “truncated differential”, see e.g. [6, 7, 11], of probability one
through the g transformation. Let (x, y, z, w) denote the difference of two vectors

each of four bytes for any definition of difference, and let (x, y, z, w)
g
→ (X, Y, Z, W )

denote that two input vectors of differences x, y, z, and w in the four bytes can
lead to outputs of differences X, Y, Z, and W in the four bytes. Then the diffusion

property implies that for a 6= 0 the differential (a, 0, 0, 0)
g
→ (b0, b1, b2, b3) where

bi 6= 0 for i = 0, . . . 3 holds with probability one.

4 Differentials for Twofish

In this section we consider (truncated) differentials of Twofish. The differentials
will specify the expected differences in each of the 32-bit words in the intermediate
ciphertexts. Let us introduce some notation. We define the difference between two
32-bit words, X and Y as

X − Y mod 232.

With this definition, the difference before and after the addition of a round key is
the same. Also, the PHT-transform is linear with respect to this difference.

We shall write a one-round differential as

(a, b, c, d) → (e, f, a, b) : (a, b) → (i, j) → (k, l), (7)

where all small letters denote a difference of two 32-bit words. The first two tuples
represent the differences in the four input words and in the four output words of the
particular round, see Figure 2. Here k = i + j mod 232 and l = k + j mod 232. The
three following pairs specify first the differences in the inputs to the g-functions,



L.R. Knudsen: Trawling Twofish (revisited) 4

then the differences in the words before and after the PHT-transform, respectively.
Also, at first we shall only be interested in whether the difference in a 32-bit word
is zero or nonzero.

Here we give a two-round differential, Ω1, which has probability 2−32 and gives
non-trivial information about at least 64 bits of the (intermediate) ciphertexts.

(a, 0, c, d) → (e, f, a, 0) : (a, 0) → (i, 0) → (i, i), p = 1
(e, f, a, 0) → (h, 0, e, f) : (e, f) → (2m,−m) → (m, 0), p = 2−32

The differential is iterative, that is, it can be concatenated with itself any number
of times. If we start and end with one-round differentials of probability one, this
yields (2r + 1)-round differentials of probability 2−(32r). Some explanation of the
differential. The only requirement on the input differences is that (a, c, d) 6= (0, 0, 0).
Then a 6= 0 ⇒ i 6= 0, and e 6= 0, f 6= 0 ⇒ m 6= 0. In the first round, two inputs
of nonzero difference a to g yields some nonzero difference i in the outputs of g,
and since the PHT is linear with respect to the difference used, it follows that the
differences in both 32-bits words after addition of the round keys will be i. Note
that since the outputs of the round function are combined with the right halves of
the inputs to the round using the exclusive-or operation, the differences e and f are
not just c⊕ i and d⊕ i, respectively. More precisely, let e1 and e2 be the two texts of
difference e and similarly for the other words. Then e = e1−e2 = (i1⊕c1)−(i2⊕c2)
(here we ignored the one-bit rotations), where i = i1− i2 and c = c1− c2. However,
if the values of c and d are nonrandom and related, then so are the values of e and
f . This phenonmenon will be discussed later in this paper. In the second round,
the two pairs of inputs of differences e and f , respectively, lead to differences 2m

and −m with an average probability of 2−32, where we assumed that neither e nor
f is zero, which will happen with probability roughly (1− 2−31) if c, d are random.
Note also, that (e, f) = (0, 0) with probabilty 2−64 if c, d are random, in which case
the (rest of the) second round has a probability of one. All in all, the probability
of the second round is approximately 2−32.

Summing up, the differential predicts 32 bits of information in each of two
rounds, a total of 64 bits with a probability of (about) 2−32.

For Ω1 a pair of plaintexts will have a difference of (a, 0, c, d), where (a, c, d) 6=
(0, 0, 0). Thus, it is possible to generate

(

296

2

)

232 ≈ 2223

pairs of plaintexts of this difference. A 15-round differential will have a probability
of 2−224.

Also, there is the following 2-round iterative differential, Ω2 of probability 2−32

(0, b, c, d) → (e, f, 0, b) : (0, b) → (0, i) → (i, 2i), p = 1
(e, f, 0, b) → (0, h, e, f) : (e, f) → (−m, m) → (0, m), p = 2−32.

Iterated to 15 rounds also Ω2 will have a probability of 2−224. There are 2223 pairs
of plaintexts with the desired difference. Therefore there are totally 2224 pairs of
plaintexts for Ω1 and Ω2. Altogether, for any fixed key, one can expect at least one
good pair for one of the differentials, Ω1, Ω2 for Twofish up to 15 rounds, that is, at
least one pair of plaintexts which follows the expected values in the differential in
each round. The first four rows of Table 1 give the probabilities of the differentials,
the number of plaintexts needed to generate one good pair, and the total number
of good pairs for Twofish reduced to 9, 11, 13, and 15 rounds.

The above differentials can be extended by using a 1-round differential of prob-
ability one in the first round. One can use the following differential, Ω1,0

(0, 0, a, 0) → (b, 0, 0, 0) : (0, 0) → (0, 0) → (0, 0), p = 1
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which can be concatenated with Ω1. And the following differential, Ω2,0

(0, 0, 0, b) → (0, c, 0, 0) : (0, 0) → (0, 0) → (0, 0), p = 1

can be concatenated with Ω2. This yields (2r+2)-round differentials of probabilities
2−(32r). The “price” to pay for this improvement in probability (or one extra round)
is fewer pairs of plaintexts with desired difference. There are 263296 = 2159 pairs of
plaintexts for each of the two differentials with the desired input differences, a total
of 2160 pairs. Thus for any fixed key, one can expect to get at least one good pair for
Twofish reduced to 12 or fewer rounds. The middle three rows of Table 1 give the
probability of the differentials, the number of plaintexts to generate one good pair,
and the total number of expected good pairs. In an attempt to get access to more

# Rounds Proba- # Plaintexts Total no. Differentials
bility to generate good pairs

1 good pair

9 2−128 264 296 Ω∗

1 and Ω∗

2

11 2−160 280 264

13 2−192 296 232

15 2−224 2128 1
8 2−96 264 264 Ω1,0 | Ω

∗

1, and Ω2,0 | Ω
∗

2

10 2−128 296 232

12 2−160 2128 1
8 2−128 264 2128 Ω1,1 | Ω

∗

1, and Ω2,1 | Ω
∗

2

10 2−160 280 296

12 2−192 296 264

14 2−224 2112 232

16 2−256 2128 1

Table 1: Truncated differentials for different number of rounds of Twofish. The
second column is the probability for each one of two differentials, the third column
the number of plaintexts required to generate one good pair, and the fourth column
the expected total number of good pairs. Ω∗ means Ω concatenated with itself some
number of times, ‘|’ means concatenation of differentials.

pairs of plaintexts to be used in the analysis we introduce some more differentials.
The following differential, Ω1,1

(u, v, w, x) → (a, 0, u, v) : (u, v) → (u′, v′) → (y, z), p = 2−32

can be concatenated with Ω1 and the following differential, Ω2,1

(u, v, w, x) → (0, b, u, v) : (u, v) → (u′, v′) → (y, z), p = 2−32

can be concatenated with Ω2. In both cases one gets 2r-round differentials of
probability 2−32r. The advantage of this approach is that more pairs of plaintexts
can be used. There are approximately 2255 pairs of plaintexts with the desired
difference.

The last five rows of Table 1 give the probabilities, the number of plaintexts
to get one good pair, and the expected number of total good pairs. As seen, for
Twofish with the full 16 rounds, for any fixed key, one can expect to get one right
pair following one of the two differentials. This does not necessarily mean that such
good pairs can be exploited in a cryptanalytic attack. However it is surprising, in
our opinion, that it is possible to push non-trivial information through all 16 rounds
of Twofish.
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5 Distinguishing Twofish from a random permu-

tation

In this section we use the results of the previous section to try and distinguish
Twofish from a randomly chosen permutation.

In a previous version of this note [4] we outline an attack using the differentials of
the prevous section to distinguish Twofish reduced to 9 or fewer rounds. This attack
considered only the zero-valued words in the differential, an approach which turned
out not to work, which was explained in a rump-session talk at AES3[5]. In the
same talk we argued that distinguishing attacks might still work by incorporating
the nonuniform distribution of differences in the nonzero words of the differential
from the previous section, e.g., the values e and f from above.

Consider the differential Ω1, restated here for convenience.

(a, 0, c, d) → (e, f, a, 0) : (a, 0) → (i, 0) → (i, i), p = 1
(e, f, a, 0) → (h, 0, e, f) : (e, f) → (2m,−m) → (m, 0), p = 2−32

As mentioned earlier the values of e and f cannot be determined directly from the
values of c, d, and i. This is because the differences considered here are defined by
subtraction modulo 232, but plaintext halves are combined with the exclusive-or
operation. (In addition there is a one-bit rotation affecting the value of e.)

However, the values of e and f are not random for given c, d, and i. To illus-
trate this, let us consider a modified variant of Twofish. Instead of combining the
plaintext halves via the exclusive-or operation assume that the halves are added
(word-wise) modulo 232. Also, we shall ignore the one-bit rotations. Note that this
yields a valid block cipher. In this case the 2-round differential will be

(a, 0, c, d) → (c + i, d + i, a, 0) p = 1
(c + i, d + i, a, 0) → (a + m, 0, c + i, d + i) p = 2−32,

where we have omitted to specify the differences inside the round function. In this
case the differential predicts not only 32 bits of information in the round function of
each round, but totally 64 bits in the ciphertexts. Note that c− d can be assumed
to be known in a known or chosen plaintext attack. This property iterates to any
number of rounds.

It is well-known that the exclusive-or operation and addition modulo 232 are
closely related with respect to differentials, see e.g. [10, 8], therefore the values of e

and f will depend on the values of c, d and i.

5.1 Tf-32 - a scaled-down variant

In an attempt to estimate the nonuniformness of the values in the above differentials
we try to make a scaled-down version of Twofish. We shall construct a variant using
8-bit words instead of 32-bit words. However, for such a scaled-down version to have
exactly the same structure as Twofish would mean that the 8-bit permutations in
the round function be constructed from 1-bit permutations. Clearly such a variant
is weak and it seems difficult to make a realistic scaled-down version of Twofish to
32-bit blocks.

Instead we shall choose the 8-bit permutation, called g above for Twofish, at
random. The second 8-bit permutation, called g8 for Twofish above, is constructed
from the first one by rotating the inputs 2 positions to the left. All additions
modulo 232 in Twofish are replaced by additions modulo 28. This also defines the
PHT-tranformation. Let us denote such a scaled-down variant by Tf-32.

Note that Tf-32 does not resemble real Twofish, since for the latter the functions
g and g8 are not randomly chosen 32-bit permutations. In fact, cf. earlier, the
functions are built from 4-bit permutations and are far from “random”.
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We conjecture that if there is an attack which can distinguish Tf-32 from a ran-
domly chosen 32-bit permutation, then there is also an attack which can distinguish
Twofish from a randomly chosen 128-bit permutation. This is because one would
expect, we think, that a Twofish variant with truly random 32-bit permutations
will be stronger than Twofish. And for similar reasons, if a distinguishing attack
on Tf-32, the scaled-down version of Twofish, does not work, one cannot transfer
the conclusion to Twofish.

5.2 χ
2-tests

To support our claim from [5] that distinguishing attacks on Twofish based on the
differentials of the previous section might work, we implemented tests on versions
of Tf-32.

We used the following 4-round differential, where we have used similar notation
as earlier in this note:

(0, 0, a, 0) → (b, 0, 0, 0)→ (c, d, b, 0) → (e, 0, c, d).

For real Twofish this differential has probability 2−32, thus it predicts that 32 par-
ticular bits of a pair of ciphertexts will be equal, thus similar as for a randomly
chosen permutation. For the reduced variant the probability is 2−8. We argue (as
in [5]) that the distribution of the value e, c, d (a three-byte value) is nonuniform
and that this can be used to distinguish this variant from a randomly chosen per-
mutation. The attack goes as follows. Choose pairs of plaintexts which differ only
in the third word (byte). If the pair of ciphertexts has equal values in the second
word, record the values of the difference in the first, third and fourth words (e, c, d
above).

One possible tool to measure nonuniformity is the χ2-test [12, 9]. In a χ2 test,
the observed χ2 statistic is compared to χ2

a,m−1, the threshold for the χ2 test with
m− 1 degrees of freedom and with significance level a. For the Twofish variant we
choose a χ2-test with 224 − 1 degrees of freedom. For a randomly chosen function
one would get a χ2-value of 224− 1 = 16, 777, 215 in 50% of the cases. We give here
other significance levels for tests with 224 − 1 degrees of freedom.

Level 0.50 0.60 0.75 0.90 0.99
χ2 16,777,215 16,778,682 16,781,122 16,784,639 16,790,694

This means that for a randomly chosen function, a χ2-value of 16,790,694 will only
happen in 1% of all cases.

Now back to the test on the Twofish variant.

5.3 The attack

For Tf-32 we choose a structure of 28 plaintexts all with equal values in the first,
second and fourth bytes, and with different values in the third bytes. From such a
structure we can form 215−27 pairs with the above input difference to the truncated
differential. For each pair of ciphertext we record the exor-difference of the values
of the first, third, and fourth bytes, if and only if, the value of the second byte is
zero. If we assume that the second byte of a ciphertext difference is zero with a
probability of 2−8, which was confirmed in the tests below, each structure will give
27 pairs for the χ2 test. With 27 structures, i.e., 215 texts, one gets about 214 pairs
for the χ2 test. Here we give the χ2 values using 215, 216, 217, and 218 texts, respec-
tively. The values are averages over 10 different tests, where in each test we chose a
random 8-bit permutation to be used in the round function and random round keys.
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# plaintexts 215 216 217 218

χ2 16,777,821 16,785,130 16,788,487 16,796,900

In the test with 216 texts, in nine of ten tests the χ2-value was well above 16,777,215.
The above tests clearly demonstrate that the values of the differences of the differ-
entials for four rounds of encryption are very nonuniformly distributed.

For Twofish one would choose structures of 232 plaintexts from which one can
construct 263 − 231 pairs of the desired difference and proceed in similar way as
above.

5.4 Variants

It is difficult to conduct similar tests on (real) Twofish, since an analogue imple-
mentation would require a table of 296 entries. However there are possible variants
of the attack. As an example, we implemented distinguishing tests on Tf-32 where
we recorded only the values of the third and fourth words in the differentials (the
values c and d above). In this case we use a χ2 test with 216 − 1 = 65, 536 degrees
of freedom. In 10 such tests with 215 plaintexts we obtained an average χ2-value of
65,571.

There are many other possible ways to set up such attacks. For example, one
could look at only a subset of bits from all three output bytes, and/or incorporate
also the value of the nonzero plaintext word/byte of the plaintext difference (“a”
above).

5.5 Conclusion of the attack

As mentioned we think it is very likely that the above attacks will work also for real
Twofish, at least when reduced to 4 rounds. For more than 4 rounds, it is an open
question of how nonuniform the distribution of differences will be. Unfortunately, it
seems there is not much hope that we can answer these questions, since it is difficult
to conduct such tests even for 4 rounds. The points we wanted to make are, first,
that the distribution of the differences in the differentials detected for Twofish in
this note are indeed nonuniform, and second, that the “retreat” from the Twofish
team [3] that distinguishing attacks on 4 rounds of a Tf-32 version show no deviation
is wrong. In fact it has been clearly demonstrated that there are attacks showing a
nonrandom behaviour. The reason for the pessimistic result of [3] is that it did not
incorporate the nonuniformness of the nonzero values in the used differentials.

One additional conclusion is that although the mixed use of group operations
might help to make it difficult to mount attacks on an algorithm, the work in this
paper also shows that it makes it difficult to conclude resistance against attacks.

6 Open Problems

In the differentials of this paper and in the above distinguishing attacks we have
not taken advantage of any intrinsic properties of g and g8. However, as shown in
Sections 2 and 3 there are properties of the Twofish round permutation which are
not present in a randomly chosen permutation. We are convinced that the attacks
as described above would work for (real) Twofish despite of these facts, and also
that incorporating intrinsic properties of g and g8 will only improve on our results,
not the opposite. Also, we note that the designers themselves[16, §8.3.1] have found
some interesting high-probability truncated differentials through the whole round
function, called F in [16].
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7 Conclusion

In this paper we analysed the AES-candidate Twofish. First, we showed that the
Twofish S-boxes have properties not present in randomly chosen S-boxes, and that
the linear transformation allows for truncated differentials of probability one. Sec-
ond, we showed that there exists differentials for Twofish for up to 16 rounds,
predicting at least 32 bits of nontrivial information in every round. Moreover, the
probabilities of these differentials are high enough such that one can expect to find
one good pair of plaintexts following the differential through all 16 rounds for any
fixed key. This is mainly due to the structure of the round function of Twofish.
In this part of our analysis we did not make use of any intrinsic properties of the
S-boxes and linear transformations in Twofish. We believe that our findings will
only be improved taking such an approach. Third, we showed that it is possible to
use the differentials to distinguish a scaled-down version of Twofish reduced to four
rounds from a randomly chosen permutation contrary to what has been claimed by
the designers. We are convinced that such attacks would apply to (real) Twofish
as well. It is left as a (presumably hard) open problem to determine for how many
rounds the distinguishing attack will work.
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